BOOTCAMP ON QUANT FINANCE

70+ hours Case Study and Project- driven Methodology Blended Learning Methodology

1. AN	1
	L
_	r
_	ľ

MODULE 1 : PRIMER

5 + 3 = 8 HOURS

ELEMENTARY Calculus	 Function and Limits Derivatives & Integration Differential Equations Taylor Series 	
PROBABILITY & Statistics	 Discrete and Continuous Random Variables Discrete and Continuous distributions Expectation and Variance Deep dive into Normal and Log normal distributions 	
MODULE 2 : P	ROBABILITY THEORIES	2 HOURS

ADVANCED PROBABILITY THEORY AND EXPECTATION ALGEBRA

Finite Probability Spaces

- Sets, algebra, Filtration
- Conditional Expectation
- Martingales

MODULE 3 : BINOMIAL MODEL EQUITY DERIVATIVES

- Real World vs Risk Neutral Probabilities
- Martingale Measure

BINOMIAL TREE

Arbitrage Pricing

- Pricing European and American options
- Stopping Time and Stopped Process
- Radon-Nikodym Derivative

www.peaks2tails.com

2.5 + 2.5 = 5 HOURS

TR TO M Bii	ANSITIONING Continuous Odels from Nomial tree	 Infinite Probability Space Simple Symmetric Random Walk Scaled Symmetric Random Walk Brownian Motion and its properties Arriving at Stock price process 	

MODULE 4 : STOCHASTIC CALCULUS

2 + 1 = 3 HOURS

- Functions of Stochastic Variables

ITO'S Calculus

- Ito's Lemma
- Ito Integral
- Popular Stochastic Differential Equation
- PROBABILITY TRANSITION DENSITIES
- Kolmogorov equations
- Steady state distributions

MODULE 5 : BLACK SCHOLES EQUATION

6 HOURS

DERIVATION PRICING AND GREEKS Delta Hedging and derivation of Black-Scholes PDE Greeks Pricing using Numerical approximation methods for vanilla and exotic options Pricing using Monte Carlo Methods for vanilla and exotics

en se de la companya	
_	

MODULE 6 : OPTION PRICING

4 HOURS

MARTINGALES APPLICATION TO OPTION PRICING

- Fundamental Asset Pricing Formula
- Girsanov theorem
- Solution to BSM using Change of Measure
- Feynmann Kac formula

MODULE 7 : FIXED INCOME

3 + 6 + 1 = 10 HOURS

RATES AND Rate Products	 Spot, Par, Swap, forward, short and long rates Bond pricing Duration and Convexity FRAs and IRS 	
STOCHASTIC INTEREST RATES AND TERM STRUCTURE MODELS	 Short rate models (Vasicek and CIR) Calibration of short rate models No Arbitrage vs Equilibrium Models Ho Lee Model Hull White Model HJM Framework 	
FUNDAMENTAL THEOREM OF ASSET PRICING	 Change of Numeraire T-forward Measure 	

re de la compañía de	

MODULE 8 : STOCHASTIC VOLATILITY MODELS2 HOURSSABR
AND
HESTON- SABR
- Heston

MODULE 9 : CREDIT RISK

6 HOURS

6 HOURS

CREDIT DEFAULT SWAPS	 An Introduction to CDS Default Modelling Toolkit. Inhomogenous Poission Process CDS Pricing: Basic and Advanced Models Bootstrapping Intensity from CDS Market Quotes Accurals and Upfront premium in CDS Pricing
----------------------------	---

MODULE 10 : X VALUATION ADJUSTMENT

COUNTERPARTY Credit RISK	 Historical Development of OTC Derivatives and Xva Credit and Debt Value Adjustment (CVA and DVA) Funding Value Adjustment (FVA) Margin and Capital Value Adjustments (MVA and KVA) Current Market Practice and Application Implementation of Counterparty Credit Valuation Adjustment(CVA) Review the Numerical Methodologies Currently Used to Quantify CVAin terms of Exposure and Monte Carlo simulation and the Libor Market Model Illustrate this Methodology as well as DVA, FVA and others 	

MODULE 11 : MARKET RISK THEORY 2 + 2 + 2 + 2 = 8 HOURS

VALUE At RISK

- Historical, Parametric and Monte Carlo
- Expected Shortfall
- Extreme Value Theory and VaR and ES
- Sensitivity based VaR

DEMO MODELS

DURING THE PROGRAM YOU WILL LEARN TO CREATE EXCEL MODELS LIKE SHOWN BELOW

FREQUENTLY ASKED QUESTIONS

₹ |||| **CERTIFICATE**

Silver Certificate on successful

Gold Certification on passing a

X

completion of projects.

2 hours MCQ based exam.

PREREQUISITE

Knowledge of Basic Excel, Basic Statistics, Calculus and Financial Products is must.

ABOUT THE TRAINER

Satya is an IIT and IIM alumni with 8+ years of total work experience spanning across Financial Risk consulting and project management and strategy. Worked as SME and Lead in Various finance, risk, regulatory engagements and complex data migration project. Adept in BASEL, FRTB capital calculations, model development and machine learning.

OUR TRAINEES WORK IN

